Обычные кремниевые детекторы ПЗС и КМОП не могут использоваться для получения изображения в спектральном диапазоне с длиной волны более 1 мкм. Кванты с длиной волны 1 мкм не могут индуцировать электроны в кремниевых детекторах, квантовая эффективность в ближнем ИК диапазоне быстро спадает до нуля.
Для регистрации ближнего ИК излучения используют уже детекторы на основе арсенид галлия-индия (InGaAs). Ну и несколько лет назад нам попал в руки коммерческий детектор такого типа ближнего ИК диапазона (SWIR, Near-infrared). Разрешение детектора небольшое: 320х256 элементов. Спектральная характеристика детектора представлена на рисунке ниже.
Казалось, ничто не предвещало сложностей, и разработка камеры на данном детекторе не должна была бы отличаться от разработки камеры видимого диапазона, но это оказалось не так. Основной сложностью оказался очень большой темновой ток детектора и очень большой разброс в параметрах отдельных элементов. Посмотрите на график ниже:
За время 16 мс потенциальная яма отдельных элементов детектора быстро заполняется на 3-5%, а для частоты 25 кадров в секунду (40 мс) это уже 8-12%. Для емкости потенциальной ямы элемента детектора 6 млн электрон — это 600 000 электронов темнового тока отдельного элемента, а шум в отдельном пикселе составляет более 800 электрон. Много это или мало? Для регистрации освещенных объектов вполне нормально, но для чувствительной камеры, которая способна регистрировать собственное излучение объектов с температурой до 100°C (как представленное на первом видео) — шум 800 электронов это очень и очень много.
На графике представлено излучение абсолютно черного тела, как видно, для объектов с температурой 300-400 K излучение в диапазоне 1-2 мкм очень слабое.
Второй особенностью является очень большой разброс характеристик каждого элемента в отдельности. Разработка заняла несколько лет, упор делался на разработку малошумящей аналоговой схемотехники, а также на аппроксимацию характеристик отдельных элементов в зависимости от температуры. Повторюсь, детектор коммерческий, мы не могли охладить детектор и напрямую уменьшить уровень темнового тока возможности не было, но смогли реализовать термостатирование детектора, что значительно сказалось на стабильности характеристик.
Ранее мы в некоторых статьях упоминали данную камеру и приводили сравнение ее работы с детекторами видимого диапазона, а также с электронно-оптическим преобразователем ЭОП 3+:
«Как видят ночью разные камеры и приборы»
также демонстрировали возможности данной камеры в режиме наблюдения звезд днем:
«Наблюдение звезд днем или дневная астрономия»
Сейчас же мы хотим дополнить опубликованное ранее и продемонстрировать другие уникальные возможности камеры ближнего ИК диапазона.
Самый распространенный вопрос — «Как камера видит в тумане?». Качественный туман застать довольно непросто, поэтому сразу извиняемся за, возможно, не очень показательное видео. Для того, чтобы продемонстрировать, как видно в реальности глазами, использовалась камера видимого диапазона Panasonic GM1.
само видео наблюдения в тумане SWIR камерой
оригиналы видео доступны по ссылкам
«Видео VS320 исходник»
«Видео Panasonic GM1 оригинал»
На всякий случай предупредим, что туманы очень сильно отличаются друг от друга, бывают туманы, когда ни в одном спектральном диапазоне ничего не видно. Результат сильно зависит от дисперсии частиц воды.
Чувствительность же камеры демонстрирует видео, представленное в начале статьи. Это обычная чашка с вкусным свежезаваренным кофе. В начале видео мы наблюдаем собственное тепловое излучение объектов, а после включения освещения — отраженное. Пока камера VS320 единственная, которая может демонстрировать видео излучения объектов до 100°C. Мы несколько раз показывали это видео на выставках и всегда сталкивались со скепсисом.
Для примера: цветная камера и глаз видят раскаленный металл с температурой выше 500°С, черно-белая ПЗС-матрица видит жало горячего паяльника с температурой 400°С, SWIR камера VS320 видит предметы начиная с 50-60°С.
Более объективные измерения по модели абсолютно черного тела. Примерно на уровне 50 градусов шум элементов детектора и сигнал модели абсолютно черного тела сравниваются.
оригинал видео можно получить здесь (внимание! большой размер, так как без сжатия)
«Видео VS320 черное тело»
Из некоторых интересных моментов, с которыми мы столкнулись во время работы с камерами,
это особенная защита, которую наносят на банкноты, возможно это люминесцентные маркеры:
Изображения банкнот при обычном освещении не отличается от указанных на сайте Центробанка России, для примера 500 руб.:
но при освещении исключительно видимым спектром (люминесцентной лампой) наблюдаются маркеры, которые находятся у разных банкнот в разных местах и могли бы использоваться для дополнительной автоматической сортировки банкнот:
на сайте ЦБ РФ такая защита не обозначена
В новых купюрах от такой маркировки, видимо, отказались, теперь маркер находится в одном и том же месте, круглый с буквой Р:
и вот все банкноты вместе:
Так же следует отметить, что ночное небо очень яркое в ближнем ИК диапазоне. Это позволяет конкурировать камерам ближнего ИК диапазона с другими приборами ночного видения, а так же для каких-то применений вроде обнаружения объектов на фоне «яркого» ночного неба.
«VS320. Ночное небо в ближнем ИК. исходник (200 МБайт)»
А вот днем наоборот, в ближнем ИК диапазоне небо намного темнее (в сравнении с яркостью неба в видимой части спектра), для примера кадр в очень яркий солнечный день.
Эта свойство может использоваться для наблюдения за небесными объектами днем, частный случай которого был описан в статье: «Наблюдение звезд днем или дневная астрономия».
Наиболее важным свойством камеры ближнего ИК (наравне с возможностью улучшения видимости в тумане) — это значительно лучшая видимость в дымке, для сравнения кадры разных частей спектра:
А вот видео в ближнем ИК диапазоне по вантовому мосту на дальности 9-10 км.
а вот демонстрация на дальности в 9 км по Смольному (в середине видео включается функция камеры: локальное контрастирование (аналог HDR/DDE))
Подводя итоги можно сказать, что камеры ближнего ИК можно применять:
- для улучшения видимости в тумане
- для улучшения видимости при атмосферной дымке, смоге
- в качестве приборов ночного видения (улучшения видимости ночью)
- поиске объектов на дневном небе
- при разработке мультиспектральных камер, когда важно увидеть значительно теплый
скрытый в видимом диапазоне объект
- для особых применений в промышленности, когда важен именно этот спектральный диапазон
- поиске замаскированных предметов, когда одни краски становятся малоконтрастными, а другие наоборот темнеют в данном диапазоне или люминесцируют.
Видеть невидимое. Ближний инфракрасный диапазон (0.9 – 1.7 мкм)
2 Июня 2020 14:55
// Статьи
На видео может показаться, что вольфрамовым ломом черпают расплавленный светящийся уран, но… нет. И это не изображение тепловизора — это самый ближний инфракрасный спектральный диапазон.